Comparing lifetime emissions of natural gas and conventional fuel vehicles: an application of the generalized ANCOVA model.
نویسندگان
چکیده
New regulations and incentives are encouraging the use of clean, alternative fuel vehicles (AFVs) in urban areas. These vehicles are seen as one option for reducing air pollution from mobile sources. However, because of the limited number of AFVs on the road, little is known about actual lifetime emissions characteristics of in-use AFVs. This study describes the use of a generalized analysis of covariance model to evaluate and compare the emissions from natural gas vehicles with emissions from reformulated gasoline vehicles. The model describes fleet-wide emissions deterioration, while also accounting for individual vehicle variability within the fleet. This ability to measure individual vehicle variability can then be used to provide realistic bounds for the emissions deterioration in individual vehicles and the fleet as a whole. In order to illustrate the use of the model, the carbon monoxide, oxides of nitrogen (NOx), non-methane hydrocarbon (NMHC), and carbon dioxide emissions characteristics of a fleet of dedicated natural gas Dodge Ram vans and a fleet of dedicated reformulated gasoline Dodge Ram vans operating in the U.S. government fleet are explored. The analysis demonstrates the utility of the statistical method and suggests a potential for natural gas Dodge Ram vans to be generally cleaner than their conventional fuel counterparts. However, in the case of NOx and NHMCs, the analysis also suggests that these emissions benefits might be reduced over the vehicle lifetime due to higher emissions deterioration rates for natural gas vehicles. As this paper is aimed at illustrating the analysis of the covariance model, the results reported herein should be considered within the context of a more comprehensive study of these data before general conclusions are possible. Generalization of these findings to other vehicle models and alternative fuel technologies is not justified without further study.
منابع مشابه
Toward an Improvement of Natural Gas-diesel Dual Fuel Engine Operation at Part Load Condition by Detail CFD Simulation
Natural gas-diesel dual fuel combustion is a beneficial strategy for achieving high efficient and low emissions operation in compression ignition engines, especially in genset application heavy duty diesel engine at rated power. This study aims to investigate a dual fuel engine performance and emissions using premixed natural gas and early direct injection of diesel fuel. Due to the different r...
متن کاملEffect of Hydrogen Addition to Natural Gas on Homogeneous Charge Compression Ignition Combustion Engines Performance and Emissions Using a Thermodynamic Simulation
The HCCI combustion process is initiated due to auto-ignition of fuel/air mixture which is dominated by chemical kinetics and therefore fuel composition has a significant effect on engine operation and a detailed reaction mechanism is essential to analysis HCCI combustion. A single zone-model permits to have a detailed chemical kinetics modeling for practical fuels. In this study a single-zone ...
متن کاملStudying Simultaneous Injection of Natural Gas and Gasoline Effect on Dual Fuel Engine Performance and Emissions
According to the Global Fuel Crisis, it seems necessary to use alternative fuel instead of gasoline. Since the natural gas is cheaper, have higher frequency than gasoline and less pollution, it is a suitable fuel. Many efforts have been done in order to replace gasoline with natural gas. One of the methods is to inject natural gas and gasoline fuel simultaneously and to use the benefits of both...
متن کاملToxic emissions from mobile sources: a total fuel-cycle analysis for conventional and alternative fuel vehicles.
Mobile sources are among the largest contributors of four hazardous air pollutants--benzene, 1,3-butadiene, acetaldehyde, and formaldehyde--in urban areas. At the same time, federal and state governments are promoting the use of alternative fuel vehicles as a means to curb local air pollution. As yet, the impact of this movement toward alternative fuels with respect to toxic emissions has not b...
متن کاملA New Mathematical Model for the Green Vehicle Routing Problem by Considering a Bi-Fuel Mixed Vehicle Fleet
This paper formulates a mathematical model for the Green Vehicle Routing Problem (GVRP), incorporating bi-fuel (natural gas and gasoline) pickup trucks in a mixed vehicle fleet. The objective is to minimize overall costs relating to service (earliness and tardiness), transportation (fixed, variable and fuel), and carbon emissions. To reflect a real-world situation, the study considers: (1) a co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Air & Waste Management Association
دوره 50 2 شماره
صفحات -
تاریخ انتشار 2000